

Nourishing the Future: Sustainable Food Systems  
for Nutrition and Dietetic Students

**Module 3: Food and our Climate**

# Practice and Resources Booklet



JOHNS HOPKINS  
CENTER *for* A LIVABLE FUTURE

**FOOD + PLANET**

© Copyright 2025 Johns Hopkins University.

Last revised: December 9, 2025

Nourishing the Future: Sustainable Food Systems for Nutrition and Dietetic Students  
*Module 3: Food and our Climate: Practice and Resources Booklet*

[Attribution-NonCommercial-ShareAlike 4.0 International](#)



# Table of Contents

---

|                                                                  |           |
|------------------------------------------------------------------|-----------|
| <b>Case Study: NYC Health &amp; Hospitals / Sodexo .....</b>     | <b>4</b>  |
| Assignment.....                                                  | 4         |
| Discussion Questions .....                                       | 4         |
| <b>Supplemental Activity 1: FoodPrint .....</b>                  | <b>5</b>  |
| Assignment.....                                                  | 5         |
| <b>Supplemental Activity 2: Planetary Health Diet .....</b>      | <b>6</b>  |
| Assignment.....                                                  | 6         |
| <b>Supplemental Activity 3: Institutional Food Service .....</b> | <b>7</b>  |
| Assignment.....                                                  | 7         |
| <b>Glossary.....</b>                                             | <b>8</b>  |
| <b>References .....</b>                                          | <b>9</b>  |
| <b>Appendix A: NYC Health + Hospitals / Sodexo.....</b>          | <b>14</b> |
| <b>Appendix B: Planetary Health Diet.....</b>                    | <b>15</b> |

# Case Study: NYC Health & Hospitals / Sodexo

---

## Assignment

Read the [Sodexo brief](#) and the Sodexo case study (Appendix A).

## Discussion Questions

1. How would you implement a plant-based default menu to encourage plant-based foods and reduce meat consumption?
2. What settings are most ideal for this type of approach?
3. How can initiatives such as Meatless Monday be implemented in your institution to advance healthy and sustainable diets?

# Supplemental Activity 1: FoodPrint

---

## Assignment

- Visit *one* of the following:
  - [Harvard Foodprint Calculator](#)
  - [Earth Day Foodprint Calculators](#)
  - [FoodPrint Quiz](#)
- **Step 1:** Calculate your FoodPrint.
- **Step 2:** Discuss your results.
  - How did you do? What food groups contributed the most and least to your foodprint?
  - What labels or notifications would make it easier to make climate friendly choices?
  - Is it easier to make sustainable and healthy choices at home or away?
  - What are three steps you could take to make climate-friendly food choices?
  - How could addressing plastic and packaging or food miles impact your conclusions?



## Supplemental Activity 2: Planetary Health Diet

---

### Assignment

- Review Table 1 in Appendix B.
- **Step 1:** Compare it to what you eat in a day.
- **Step 2:** Discuss the differences.
  - What food groups do you consume in lower amounts than recommended? Which are higher?
  - What labels or notifications would make it easier to make climate-friendly (and environmentally-friendly) choices?
  - Is it easier to make sustainable and healthy choices at home or away?
  - What are three steps you can take to align your meals with the planetary health diet pattern?



# Supplemental Activity 3: Institutional Food Service

---

## Assignment

- Review the [Ramsing et al \(2023\)](#) paper about the implications of dairy and plant-based milks for nutrition and planetary health.
- **Step 1:** Understand the scenario.
  - You are a member of the Culinary Institute of America (CIA) Scientific and Technical Advisory Committee. Your role is to develop evidence-based guidance for institutional food service providers (e.g., Aramark, Sodexo, Bon Appetit) on how they can refine their menus to better align with public health and sustainability goals.
  - Remember what is at stake. Accurate and nuanced communication to your colleagues at the CIA, and their stakeholders, is critical so that they can make an informed decision about milk sourcing. Your recommendations could impact which types of milk are sold in university, hospital, and government cafeterias all around the globe, with sizable repercussions for food system sustainability and health.
- **Step 2:** Address the topic in question.
  - Which type of milk best aligns with both health and sustainability goals?
  - They are considering cow milk, soy, oat, and almond milk (among others) and will leverage the concepts of nudging and the food environment to place more sustainable food options front and center in cafeteria settings. Your specific assignment on the Advisory Council is to investigate the evidence on nutrition, keeping environmental sustainability in mind as well.
- **Step 3:** Review the evidence base.
  - You find a research paper that states, “Of the various milks available on the market, evidence suggests oat milk is best for climate.” Rather than automatically recommending a full switch to oat milk, you decide to look at some other studies. You will also contact the authors and ask some follow-up questions.
  - What additional questions would you want answered?

# Glossary

---

**Carbon sequestration.** The process of capturing and storing atmospheric carbon dioxide. ([USGS, 2025](#))

**Climate mitigation.** Reducing the flow of heat-trapping greenhouse gases into the atmosphere, either by reducing sources of them or enhancing the “sinks” that accumulate and store them. ([NASA, 2024](#))

**Enteric fermentation / ruminant eructation.** The digestive process of animals that releases methane (CH<sub>4</sub>), a potent greenhouse gas as a by-product. ([CGIAR](#))

**Food environment.** The consumer interface with the food system that encompasses the availability, affordability, convenience, and desirability of foods. ([Downs et al, 2020](#))

**Greenhouse effect.** The process by which heat-trapping gases in the Earth’s atmosphere absorb infrared radiation from the sun, reflect some of it back into space, and emit some of it towards the earth. ([UN-REDD](#))

**Nudging.** Any aspect of the choice architecture that alters people’s behavior in a predictable way without forbidding any options or significantly changing their economic incentives. (Thaler and Sunstein, 2008)

**Pollinator-dependent crops.** Plant species intended for human consumption that rely on biotic agents, primarily insects, birds, and other animals to transfer pollen for maximal fertilization and fruit or seed production. ([Aizen et al, 2009](#); [Ritchie, 2021](#))

## References

---

Aschemann-Witzel, J., & Janssen, M. (2022). The role of policy actions to accelerate food consumer behaviour change. *Agricultural and Food Economics*, 10(1), 22. <https://doi.org/10.1186/s40100-022-00230-x>

Bardan, R. (2025). *Temperatures rising: NASA confirms 2024 warmest year on record*. NASA. <https://www.nasa.gov/news-release/temperatures-rising-nasa-confirms-2024-warmest-year-on-record/>

California Department of Public Health. (2025). *Climate change and health equity*. <https://www.cdph.ca.gov/Programs/OHE>

Clark, M. A., Domingo, N. G. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., Azevedo, I. L., & Hill, J. D. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. *Science*, 370(6517), 705–708. <https://doi.org/10.1126/science.aba7357>

Climate Central. (2023). *The hottest 12-month stretch in recorded history: How carbon pollution affected countries and major cities worldwide from November 2022 to October 2023*. <https://www.climatecentral.org/report/the-hottest-12-month-stretch-in-recorded-history-2023>

Cline, W. (2007). *Global warming and agriculture: impact estimates by country*. Center for Global Development. <https://www.cgdev.org/publication/9780881324037-global-warming-and-agriculture-impact-estimates-country>

Culligan, P. J. (2019). Green infrastructure and urban sustainability: A discussion of recent advances and future challenges based on multiyear observations in New York City. *Science and Technology for the Built Environment*, 25(9), 1113–1120. <https://doi.org/10.1080/23744731.2019.1629243>

Dong, J., Gruda, N., Lam, S. K., Li, X., & Duan, Z. (2018). Effects of elevated CO<sub>2</sub> on nutritional quality of vegetables: A review. *Frontiers in Plant Science*, 9. <https://doi.org/10.3389/fpls.2018.00924>

Drewnowski, A., Rehm, C. D., Martin, A., Verger, E. O., Voynnesson, M., & Imbert, P. (2015). Energy and nutrient density of foods in relation to their carbon footprint. *The American Journal of Clinical Nutrition*, 101(1), 184–191. <https://doi.org/10.3945/ajcn.114.092486>

FAO. (2024a). *Employment indicators 2000–2022 (October 2024 update)*. (No. FAOSTAT Analytical Brief 92). Food and Agriculture Organization of the United Nations. [https://www.fao.org/statistics/highlights-archive/highlights-detail/employment-indicators-2000-2022-\(september-2024-update\)/en](https://www.fao.org/statistics/highlights-archive/highlights-detail/employment-indicators-2000-2022-(september-2024-update)/en)

FAO. (2024b). FAOSTAT. Food and Agriculture Organization of the United Nations. <https://www.fao.org/faostat/en/#data/FBS>

Gerber, P. J., Steinfield, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). *Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities* (No. i3437e). Food and Agriculture Organization of the United Nations. <https://www.fao.org/4/i3437e/i3437e.pdf>

Gorski, M. T., & Roberto, C. A. (2015). Public health policies to encourage healthy eating habits: Recent perspectives. *Journal of Healthcare Leadership*, 7, 81–90. <https://doi.org/10.2147/JHL.S69188>

Ivanovich, C., Sun, T., Gordon, D., & Ocko, I. (2023). Future warming from global food consumption. *Nature Climate Change*, 13, 297–302. <https://doi.org/10.1038/s41558-023-01605-8>

Johnson, A. J., Stevenson, J., Pettit, J., Jasthi, B., Byhre, T., & Harnack, L. (2025). Assessing the nutrient content of plant-based milk alternative products available in the United States. *Journal of the Academy of Nutrition and Dietetics*, 125(4), 515–527. <https://doi.org/10.1016/j.jand.2024.06.003>

Jovović, Z., Velimirović, A., & Yaman, N. (2024). Climate and crop production crisis. In Ö. Çetin (Ed.), *Agriculture and water management under climate change* (pp. 1–28). Springer, Cham. [https://doi.org/10.1007/978-3-031-74307-8\\_1](https://doi.org/10.1007/978-3-031-74307-8_1)

Kim, B. F., Santo, R. E., Scatterday, A. P., Fry, J. P., Synk, C. M., Cebron, S. R., Mekonnen, M. M., Hoekstra, A. Y., de Pee, S., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Country-specific dietary shifts to mitigate climate and water crises. *Global Environmental Change*, 62. <https://doi.org/10.1016/j.gloenvcha.2019.05.010>

Lindsey, R., & Dahlman, L. (2024). *Climate change: global temperature*. NOAA Climate. <https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature>

Marteau, T. M. (2017). Towards environmentally sustainable human behaviour: Targeting non-conscious and conscious processes for effective and acceptable policies. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 375(2095). <https://doi.org/10.1098/rsta.2016.0371>

Mehra, M. (2021). *Resilient & sustainable land management practices. Project Drawdown*. [Presentation Slides]. [https://unfccc.int/sites/default/files/resource/2%20PD\\_NBS\\_Mamta%20Mehra\\_Oct2021.pdf#:~:text=How%20can%20we%20reduce%20the%20pressures%20on,worldwide%20along%20with%20addressing%20the%20issue%20of](https://unfccc.int/sites/default/files/resource/2%20PD_NBS_Mamta%20Mehra_Oct2021.pdf#:~:text=How%20can%20we%20reduce%20the%20pressures%20on,worldwide%20along%20with%20addressing%20the%20issue%20of)

NASA. (2020). *World of change: global temperatures*. NASA Earth Observatory. <https://earthobservatory.nasa.gov/world-of-change/global-temperatures>

Neff, R. A., Edwards, D., Palmer, A., Ramsing, R., Righter, A., & Wolfson, J. (2018). Reducing meat consumption in the USA: A nationally representative survey of attitudes and behaviours. *Public Health Nutrition*, 21(10), 1835–1844. <https://doi.org/10.1017/S1368980017004190>

NOAA Climate. (2023a). *Global average surface temperature in 2022 compared to the 1991–2020 average*. Climate.Gov. <https://www.climate.gov/media/15007>

NOAA Climate. (2023b). *It's Official: 2022 was the world's 6th-warmest year on record*. Climate.Gov. <https://www.climate.gov/https://www.climate.gov/media/15007>

NRDC. (2017). *Less beef, less carbon: Americans shrink their diet-related carbon footprint by 10 percent between 2005 and 2014 (Nos. 16-11-B; Issue Paper)*. <https://www.nrdc.org/sites/default/files/less-beef-less-carbon-ip.pdf>

Our World in Data. (2025). *Yearly per capita supply of all meat: Meat supply per person*. <https://ourworldindata.org/grapher/meat-supply-per-person?time=2022>

Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. *Science*, 360(6392), 987–992. <https://doi.org/10.1126/science.aaq0216>

Ramsing, R., Santo, R., Kim, B. F., Altema-Johnson, D., Wooden, A., Chang, K. B., Semba, R. D., & Love, D. C. (2023). Dairy and plant-based milks: implications for nutrition and planetary health. *Current Environmental Health Reports*, 10(3), 291–302. <https://doi.org/10.1007/s40572-023-00400-z>

Reinders, M. J., & Dagevos, H. (2024). Meat reduction in small portions. *Nature Food*, 12(5), 972–973. <https://doi.org/10.1038/s43016-024-01084-w>

Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2020). World scientists' warning of a climate emergency. *BioScience*, 70(1), 8–12. Scopus. <https://doi.org/10.1093/biosci/biz088>

Ritchie, H. (2019). *Food production is responsible for one-quarter of the world's greenhouse gas emissions*. Our World in Data. <https://ourworldindata.org/food-ghg-emissions>

Ritchie, H., & Roser, M. (2019). *Half of the world's habitable land is used for agriculture*. Our World in Data. <https://ourworldindata.org/global-land-for-agriculture>

Rocque, R. J., Beaudoin, C., Ndjaboue, R., Cameron, L., Poirier-Bergeron, L., Poulin-Rheault, R.-A., Fallon, C., Tricco, A. C., & Witteman, H. O. (2021). Health effects of climate change: An overview of systematic reviews. *BMJ Open*, 11(6). <https://doi.org/10.1136/bmjopen-2020-046333>

Rust, N. A., Ridding, L., Ward, C., Clark, B., Kehoe, L., Dora, M., Whittingham, M. J., McGowan, P., Chaudhary, A., Reynolds, C. J., Trivedy, C., & West, N. (2020). How to transition to reduced-meat diets that benefit people and the planet. *Science of the Total Environment*, 718. <https://doi.org/10.1016/j.scitotenv.2020.137208>

Santo, R. E., Kim, B. F., Goldman, S. E., Dutkiewicz, J., Biehl, E. M. B., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Considering plant-based meat substitutes and cell-based meats: a public health and food systems perspective. *Frontiers in Sustainable Food Systems*, 4. <https://doi.org/10.3389/fsufs.2020.00134>

Shakory, S., Altema-Johnson, D., Hendrickson, Z. M., & Ramsing, R. (2025). Dietary changes among people practicing Meatless Monday: A cross-sectional study. *Appetite*, 204, 107760. <https://doi.org/10.1016/j.appet.2024.107760>

Shalant, J. (2017). *To shrink your carbon footprint, ease up on the dairy*. NRDC. <https://www.nrdc.org/stories/shrink-your-carbon-footprint-ease-dairy>

Smedman, A., Måansson, H. L., Drewnowski, A., & Edman, A.-K. M. (2010). Nutrient density of beverages in relation to climate impact. *Food & Nutrition Research*, 54(5170). <https://doi.org/10.3402/fnr.v54i0.5170>

The EAT-Lancet Commission on Food, Planet, Health. (n.d.). *The planetary health diet. EAT forum*. Retrieved July 31, 2025, from <https://eatforum.org/eat-lancet-commission/the-planetary-health-diet-and-you/>

UN. (n.d.). *Climate action fast facts*. United Nations Climate Action; Retrieved July 31, 2025, from <https://www.un.org/en/climatechange/science/key-findings>

UNFCCC. (2022). *Nationally determined contributions under the Paris Agreement: Synthesis report by the secretariat (No. GE.22-17490(E))*. United Nations Framework Convention on Climate Change. <https://unfccc.int/documents/619180>

US EPA. (2014). *Climate change indicators in the United States, 2014*. United States Environmental Protection Agency. [www.epa.gov/climatechange/indicators](http://www.epa.gov/climatechange/indicators)

US EPA. (2025). *Inventory of U.S. greenhouse gas emissions and sinks*. United States Environmental Protection Agency. <https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks>

Vonderschmidt, A., Jaacks, L. M., Alexander, P., Green, R., Bellows, A. L., & Stewart, C. (2024). Smaller meat portions contribute the most to reducing meat

consumption in the United Kingdom. *Nature Food*, 5(12), 982–987.  
<https://doi.org/10.1038/s43016-024-01070-2>

Wellesley, L., & Froggatt, A. (2023). *Changing climate, changing diets: pathways to lower meat consumption*. Chatham House.  
<https://www.chathamhouse.org/2015/11/changing-climate-changing-diets-pathways-lower-meat-consumption>

World Bank. (2024). *Agriculture, forestry, and fishing, value added (% of GDP)*.  
<https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS>

## Appendix A: NYC Health + Hospitals / Sodexo

---

Food and Planet. (January 2025). *NYC Health + Hospitals / Sodexo*.



## INSIGHTS

- **Introducing new recipes through pilot testing with an 80% satisfaction threshold ensured high-quality meals, fostering trust and enthusiasm among patients.**
- **Empowering culinary staff to explain the health and flavor benefits of plant-based dishes and gathering patient feedback created a positive feedback loop, improving acceptance and satisfaction.**

## RDNS CALL TO ACTION

- Advocate for plant-based meals in hospital settings by promoting their health benefits and environmental impact.
- Collaborate with culinary teams to integrate plant-based options into patient menus, educate staff and patients, and support sustainability through data-driven initiatives.

## CONTACT

**CARRINA BURKE, MS, RD, CDN, CNSC**

Client Executive of Clinical Nutrition Services,  
 Sodexo Healthcare at NYC Health + Hospitals  
 Carrina.Burke@sodexo.com  
[sodexo.com](http://sodexo.com)

## NYC Health + Hospitals and Sodexo: Plant-Based Menus

NYC Health + Hospitals partnered with Sodexo to prioritize plant-based meals as the default option for patients, starting with Meatless Mondays and expanding to daily offerings. This initiative supported patient health outcomes, improved environmental sustainability, and built strong patient satisfaction through high-quality meals and effective communication about their benefits.

## CHALLENGE

NYC Health + Hospitals sought to support patient health and reduce the environmental impact of hospital meals by integrating more plant-based options. This initiative aimed to lower carbon emissions, support sustainability goals, and help manage common health conditions like cardiovascular disease, diabetes, and high blood pressure.

## SOLUTION

To address these challenges, NYC Health + Hospitals partnered with Sodexo to make plant-based meals the default option for patient lunches and dinners. Starting with the introduction of Meatless Mondays in 2019, the initiative expanded in 2022 to feature plant-based meals as the chef's daily recommendation, ensuring that all dishes were freshly prepared and met high satisfaction standards. This approach combined culinary excellence with patient satisfaction, highlighting the health benefits and environmental impact of plant-based dining.

## KEY OUTCOMES

**1.2 Million Plant-Based Meals Served**

NYC Health + Hospitals served 1.2 million plant-based meals within two years of the initiative's full rollout.

**36% Reduction in Carbon Emissions**

The shift to plant-based meals contributed to a 36% year-on-year reduction in carbon emissions.

**150 Registered Dietitians**

150 registered dietitians were employed at NYC Health + Hospitals, proudly collaborating to make a big difference in patient and planetary health.

**90% Patient Satisfaction**

Patient satisfaction with plant-based meals consistently remained above 90%.



## Appendix B: Planetary Health Diet

---

The EAT-Lancet Commission on Food, Planet, Health. (2019). *Table 1, Scientific targets for a planetary health diet, with possible ranges, for an intake of 2500 kcal/day* [Table]. The Planetary Health Diet. EAT Forum. <https://eatforum.org/eat-lancet/summary-report/>

# Target 1

## Healthy Diets

Healthy diets have an optimal caloric intake and consist largely of a diversity of plant-based foods, low amounts of animal source foods, contain unsaturated rather than saturated fats, and limited amounts of refined grains, highly processed foods and added sugars.

|                                                                                     |                                                             | Macronutrient intake<br>grams per day<br>(possible range) | Caloric intake<br>kcal per day |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|
|    | Whole grains<br><b>Rice, wheat, corn and other</b>          | <b>232</b>                                                | <b>811</b>                     |
|    | Tubers or starchy vegetables<br><b>Potatoes and cassava</b> | <b>50</b> (0–100)                                         | <b>39</b>                      |
|    | Vegetables<br><b>All vegetables</b>                         | <b>300</b> (200–600)                                      | <b>78</b>                      |
|   | Fruits<br><b>All fruits</b>                                 | <b>200</b> (100–300)                                      | <b>126</b>                     |
|  | Dairy foods<br><b>Whole milk or equivalents</b>             | <b>250</b> (0–500)                                        | <b>153</b>                     |
|  | Protein sources<br><b>Beef, lamb and pork</b>               | <b>14</b> (0–28)                                          | <b>30</b>                      |
|                                                                                     | <b>Chicken and other poultry</b>                            | <b>29</b> (0–58)                                          | <b>62</b>                      |
|                                                                                     | <b>Eggs</b>                                                 | <b>13</b> (0–25)                                          | <b>19</b>                      |
|                                                                                     | <b>Fish</b>                                                 | <b>28</b> (0–100)                                         | <b>40</b>                      |
|  | <b>Legumes</b>                                              | <b>75</b> (0–100)                                         | <b>284</b>                     |
|                                                                                     | <b>Nuts</b>                                                 | <b>50</b> (0–75)                                          | <b>291</b>                     |
|  | Added fats<br><b>Unsaturated oils</b>                       | <b>40</b> (20–80)                                         | <b>354</b>                     |
|                                                                                     | <b>Saturated oils</b>                                       | <b>11.8</b> (0–11.8)                                      | <b>96</b>                      |
|  | Added sugars<br><b>All sugars</b>                           | <b>31</b> (0–31)                                          | <b>120</b>                     |

**Table 1**

Scientific targets for a planetary health diet, with possible ranges, for an intake of 2500 kcal/day.

Although the planetary health diet, which is based on health considerations, is consistent with many traditional eating patterns, it does not imply that the global population should eat exactly the same food, nor does it prescribe an exact diet. Instead, the planetary health diet outlines empirical food groups and ranges of food intakes, which combined in a diet, would optimize human health. Local interpretation and adaptation of the universally-applicable planetary health diet is necessary and should reflect the culture, geography and demography of the population and individuals.